//---------------------------------------------------------------------------- // Anti-Grain Geometry (AGG) - Version 2.5 // A high quality rendering engine for C++ // Copyright (C) 2002-2006 Maxim Shemanarev // Contact: mcseem@antigrain.com // mcseemagg@yahoo.com // http://antigrain.com // // AGG is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // // AGG is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with AGG; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, // MA 02110-1301, USA. //---------------------------------------------------------------------------- #ifndef AGG_ELLIPSE_INCLUDED #define AGG_ELLIPSE_INCLUDED #include "agg_basics.h" #include <math.h> namespace agg { //----------------------------------------------------------------ellipse class ellipse { public: ellipse() : m_x(0.0), m_y(0.0), m_rx(1.0), m_ry(1.0), m_scale(1.0), m_num(4), m_step(0), m_cw(false) {} ellipse(double x, double y, double rx, double ry, unsigned num_steps=0, bool cw=false) : m_x(x), m_y(y), m_rx(rx), m_ry(ry), m_scale(1.0), m_num(num_steps), m_step(0), m_cw(cw) { if(m_num == 0) calc_num_steps(); } void init(double x, double y, double rx, double ry, unsigned num_steps=0, bool cw=false); void approximation_scale(double scale); void rewind(unsigned path_id); unsigned vertex(double* x, double* y); private: void calc_num_steps(); double m_x; double m_y; double m_rx; double m_ry; double m_scale; unsigned m_num; unsigned m_step; bool m_cw; }; //------------------------------------------------------------------------ inline void ellipse::init(double x, double y, double rx, double ry, unsigned num_steps, bool cw) { m_x = x; m_y = y; m_rx = rx; m_ry = ry; m_num = num_steps; m_step = 0; m_cw = cw; if(m_num == 0) calc_num_steps(); } //------------------------------------------------------------------------ inline void ellipse::approximation_scale(double scale) { m_scale = scale; calc_num_steps(); } //------------------------------------------------------------------------ inline void ellipse::calc_num_steps() { double ra = (fabs(m_rx) + fabs(m_ry)) / 2; double da = acos(ra / (ra + 0.125 / m_scale)) * 2; m_num = uround(2*pi / da); } //------------------------------------------------------------------------ inline void ellipse::rewind(unsigned) { m_step = 0; } //------------------------------------------------------------------------ inline unsigned ellipse::vertex(double* x, double* y) { if(m_step == m_num) { ++m_step; return path_cmd_end_poly | path_flags_close | path_flags_ccw; } if(m_step > m_num) return path_cmd_stop; double angle = double(m_step) / double(m_num) * 2.0 * pi; if(m_cw) angle = 2.0 * pi - angle; *x = m_x + cos(angle) * m_rx; *y = m_y + sin(angle) * m_ry; m_step++; return ((m_step == 1) ? path_cmd_move_to : path_cmd_line_to); } } #endif |