//---------------------------------------------------------------------------- // Anti-Grain Geometry (AGG) - Version 2.5 // A high quality rendering engine for C++ // Copyright (C) 2002-2006 Maxim Shemanarev // Contact: mcseem@antigrain.com // mcseemagg@yahoo.com // http://antigrain.com // // AGG is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // // AGG is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with AGG; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, // MA 02110-1301, USA. //---------------------------------------------------------------------------- #ifndef AGG_SIMUL_EQ_INCLUDED #define AGG_SIMUL_EQ_INCLUDED #include <math.h> #include "agg_basics.h" namespace agg { //=============================================================swap_arrays template<class T> void swap_arrays(T* a1, T* a2, unsigned n) { unsigned i; for(i = 0; i < n; i++) { T tmp = *a1; *a1++ = *a2; *a2++ = tmp; } } //============================================================matrix_pivot template<unsigned Rows, unsigned Cols> struct matrix_pivot { static int pivot(double m[Rows][Cols], unsigned row) { int k = int(row); double max_val, tmp; max_val = -1.0; unsigned i; for(i = row; i < Rows; i++) { if((tmp = fabs(m[i][row])) > max_val && tmp != 0.0) { max_val = tmp; k = i; } } if(m[k][row] == 0.0) { return -1; } if(k != int(row)) { swap_arrays(m[k], m[row], Cols); return k; } return 0; } }; //===============================================================simul_eq template<unsigned Size, unsigned RightCols> struct simul_eq { static bool solve(const double left[Size][Size], const double right[Size][RightCols], double result[Size][RightCols]) { unsigned i, j, k; double a1; double tmp[Size][Size + RightCols]; for(i = 0; i < Size; i++) { for(j = 0; j < Size; j++) { tmp[i][j] = left[i][j]; } for(j = 0; j < RightCols; j++) { tmp[i][Size + j] = right[i][j]; } } for(k = 0; k < Size; k++) { if(matrix_pivot<Size, Size + RightCols>::pivot(tmp, k) < 0) { return false; // Singularity.... } a1 = tmp[k][k]; for(j = k; j < Size + RightCols; j++) { tmp[k][j] /= a1; } for(i = k + 1; i < Size; i++) { a1 = tmp[i][k]; for (j = k; j < Size + RightCols; j++) { tmp[i][j] -= a1 * tmp[k][j]; } } } for(k = 0; k < RightCols; k++) { int m; for(m = int(Size - 1); m >= 0; m--) { result[m][k] = tmp[m][Size + k]; for(j = m + 1; j < Size; j++) { result[m][k] -= tmp[m][j] * result[j][k]; } } } return true; } }; } #endif |