//---------------------------------------------------------------------------- // Anti-Grain Geometry (AGG) - Version 2.5 // A high quality rendering engine for C++ // Copyright (C) 2002-2006 Maxim Shemanarev // Contact: mcseem@antigrain.com // mcseemagg@yahoo.com // http://antigrain.com // // AGG is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // // AGG is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with AGG; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, // MA 02110-1301, USA. //---------------------------------------------------------------------------- #include "agg_math.h" #include "agg_vertex_sequence.h" #include "agg_trans_single_path.h" namespace agg { //------------------------------------------------------------------------ trans_single_path::trans_single_path() : m_base_length(0.0), m_kindex(0.0), m_status(initial), m_preserve_x_scale(true) { } //------------------------------------------------------------------------ void trans_single_path::reset() { m_src_vertices.remove_all(); m_kindex = 0.0; m_status = initial; } //------------------------------------------------------------------------ void trans_single_path::move_to(double x, double y) { if(m_status == initial) { m_src_vertices.modify_last(vertex_dist(x, y)); m_status = making_path; } else { line_to(x, y); } } //------------------------------------------------------------------------ void trans_single_path::line_to(double x, double y) { if(m_status == making_path) { m_src_vertices.add(vertex_dist(x, y)); } } //------------------------------------------------------------------------ void trans_single_path::finalize_path() { if(m_status == making_path && m_src_vertices.size() > 1) { unsigned i; double dist; double d; m_src_vertices.close(false); if(m_src_vertices.size() > 2) { if(m_src_vertices[m_src_vertices.size() - 2].dist * 10.0 < m_src_vertices[m_src_vertices.size() - 3].dist) { d = m_src_vertices[m_src_vertices.size() - 3].dist + m_src_vertices[m_src_vertices.size() - 2].dist; m_src_vertices[m_src_vertices.size() - 2] = m_src_vertices[m_src_vertices.size() - 1]; m_src_vertices.remove_last(); m_src_vertices[m_src_vertices.size() - 2].dist = d; } } dist = 0.0; for(i = 0; i < m_src_vertices.size(); i++) { vertex_dist& v = m_src_vertices[i]; double d = v.dist; v.dist = dist; dist += d; } m_kindex = (m_src_vertices.size() - 1) / dist; m_status = ready; } } //------------------------------------------------------------------------ double trans_single_path::total_length() const { if(m_base_length >= 1e-10) return m_base_length; return (m_status == ready) ? m_src_vertices[m_src_vertices.size() - 1].dist : 0.0; } //------------------------------------------------------------------------ void trans_single_path::transform(double *x, double *y) const { if(m_status == ready) { if(m_base_length > 1e-10) { *x *= m_src_vertices[m_src_vertices.size() - 1].dist / m_base_length; } double x1 = 0.0; double y1 = 0.0; double dx = 1.0; double dy = 1.0; double d = 0.0; double dd = 1.0; if(*x < 0.0) { // Extrapolation on the left //-------------------------- x1 = m_src_vertices[0].x; y1 = m_src_vertices[0].y; dx = m_src_vertices[1].x - x1; dy = m_src_vertices[1].y - y1; dd = m_src_vertices[1].dist - m_src_vertices[0].dist; d = *x; } else if(*x > m_src_vertices[m_src_vertices.size() - 1].dist) { // Extrapolation on the right //-------------------------- unsigned i = m_src_vertices.size() - 2; unsigned j = m_src_vertices.size() - 1; x1 = m_src_vertices[j].x; y1 = m_src_vertices[j].y; dx = x1 - m_src_vertices[i].x; dy = y1 - m_src_vertices[i].y; dd = m_src_vertices[j].dist - m_src_vertices[i].dist; d = *x - m_src_vertices[j].dist; } else { // Interpolation //-------------------------- unsigned i = 0; unsigned j = m_src_vertices.size() - 1; if(m_preserve_x_scale) { unsigned k; for(i = 0; (j - i) > 1; ) { if(*x < m_src_vertices[k = (i + j) >> 1].dist) { j = k; } else { i = k; } } d = m_src_vertices[i].dist; dd = m_src_vertices[j].dist - d; d = *x - d; } else { i = unsigned(*x * m_kindex); j = i + 1; dd = m_src_vertices[j].dist - m_src_vertices[i].dist; d = ((*x * m_kindex) - i) * dd; } x1 = m_src_vertices[i].x; y1 = m_src_vertices[i].y; dx = m_src_vertices[j].x - x1; dy = m_src_vertices[j].y - y1; } double x2 = x1 + dx * d / dd; double y2 = y1 + dy * d / dd; *x = x2 - *y * dy / dd; *y = y2 + *y * dx / dd; } } } |