//---------------------------------------------------------------------------- // Anti-Grain Geometry (AGG) - Version 2.5 // A high quality rendering engine for C++ // Copyright (C) 2002-2006 Maxim Shemanarev // Contact: mcseem@antigrain.com // mcseemagg@yahoo.com // http://antigrain.com // // AGG is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // // AGG is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with AGG; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, // MA 02110-1301, USA. //---------------------------------------------------------------------------- #ifndef AGG_TRANS_BILINEAR_INCLUDED #define AGG_TRANS_BILINEAR_INCLUDED #include "agg_basics.h" #include "agg_simul_eq.h" namespace agg { //==========================================================trans_bilinear class trans_bilinear { public: //-------------------------------------------------------------------- trans_bilinear() : m_valid(false) {} //-------------------------------------------------------------------- // Arbitrary quadrangle transformations trans_bilinear(const double* src, const double* dst) { quad_to_quad(src, dst); } //-------------------------------------------------------------------- // Direct transformations trans_bilinear(double x1, double y1, double x2, double y2, const double* quad) { rect_to_quad(x1, y1, x2, y2, quad); } //-------------------------------------------------------------------- // Reverse transformations trans_bilinear(const double* quad, double x1, double y1, double x2, double y2) { quad_to_rect(quad, x1, y1, x2, y2); } //-------------------------------------------------------------------- // Set the transformations using two arbitrary quadrangles. void quad_to_quad(const double* src, const double* dst) { double left[4][4]; double right[4][2]; unsigned i; for(i = 0; i < 4; i++) { unsigned ix = i * 2; unsigned iy = ix + 1; left[i][0] = 1.0; left[i][1] = src[ix] * src[iy]; left[i][2] = src[ix]; left[i][3] = src[iy]; right[i][0] = dst[ix]; right[i][1] = dst[iy]; } m_valid = simul_eq<4, 2>::solve(left, right, m_mtx); } //-------------------------------------------------------------------- // Set the direct transformations, i.e., rectangle -> quadrangle void rect_to_quad(double x1, double y1, double x2, double y2, const double* quad) { double src[8]; src[0] = src[6] = x1; src[2] = src[4] = x2; src[1] = src[3] = y1; src[5] = src[7] = y2; quad_to_quad(src, quad); } //-------------------------------------------------------------------- // Set the reverse transformations, i.e., quadrangle -> rectangle void quad_to_rect(const double* quad, double x1, double y1, double x2, double y2) { double dst[8]; dst[0] = dst[6] = x1; dst[2] = dst[4] = x2; dst[1] = dst[3] = y1; dst[5] = dst[7] = y2; quad_to_quad(quad, dst); } //-------------------------------------------------------------------- // Check if the equations were solved successfully bool is_valid() const { return m_valid; } //-------------------------------------------------------------------- // Transform a point (x, y) void transform(double* x, double* y) const { double tx = *x; double ty = *y; double xy = tx * ty; *x = m_mtx[0][0] + m_mtx[1][0] * xy + m_mtx[2][0] * tx + m_mtx[3][0] * ty; *y = m_mtx[0][1] + m_mtx[1][1] * xy + m_mtx[2][1] * tx + m_mtx[3][1] * ty; } //-------------------------------------------------------------------- class iterator_x { double inc_x; double inc_y; public: double x; double y; iterator_x() {} iterator_x(double tx, double ty, double step, const double m[4][2]) : inc_x(m[1][0] * step * ty + m[2][0] * step), inc_y(m[1][1] * step * ty + m[2][1] * step), x(m[0][0] + m[1][0] * tx * ty + m[2][0] * tx + m[3][0] * ty), y(m[0][1] + m[1][1] * tx * ty + m[2][1] * tx + m[3][1] * ty) { } void operator ++ () { x += inc_x; y += inc_y; } }; iterator_x begin(double x, double y, double step) const { return iterator_x(x, y, step, m_mtx); } private: double m_mtx[4][2]; bool m_valid; }; } #endif |